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In this paper we derive a direct relationship between the staircase-polygon-generating function Z; of
Guttmann and Prellberg [Phys. Rev. E 47, R2233 (1993)] and the generating function for recurrent lat-
tice walks P, for the simple (hyper-) cubic lattice in all dimensions d. A recursion formula is obtained
for the Z,; with respect to dimension, which leads to a simplified derivation of Guttmann and Prellberg’s
result for d =3, avoiding the use of the Heun function, and a derivation of their formula for d =4 from

an integral representation is given in the Appendix.

PACS number(s): 64.60.Ak, 36.20.Ey, 75.40.Cx

INTRODUCTION

In an interesting recent paper [1], Guttmann and
Prellberg investigated the generating function for stair-
case polynomials on a d-dimensional hypercubic lattice
(d=1,2,3,...). For d=3,4, due to the occurrence of
the same Heun function as in Joyce’s [2] treatment of the
lattice Green functions for d =3, they suggested that
there might be a relationship between the generating
function
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for squares of multinomial coefficients and the lattice
Green functions
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In this Rapid Communication, we shall show that Z; and
P, are in fact equivalent to one another through the Abel
transform. In addition to some related observations, we
present in the Appendix a direct evaluation of Z,, which
avoids the introduction of Heun functions.

INTEGRAL REPRESENTATIONS
AND THE ABEL EQUATION

By noting the identities
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we obtain the integral representations

zd(x2)=f0°°t1<o(t)1g(xt)dz (6a)
and
22)= [ “e T If(sz /d)ds . (6b)
Therefore, since
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For the parameter ranges indicated, all the integrals are
absolutely convergent; sums and integrals can therefore
be interchanged freely.

Equation (8) is easily found to be equivalent to the Abel
integral equation [3]
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where the 1’s have been inserted so that the unknown
function £ /X(Z,(£)—1) vanishes as £&—~0+. The in-
version of (9) yields

o d 1 uPy(dxu)
Z,(x*) i xfo __V_lt;_z du

Equations (8) and (10) prove that Z; and P, are simply
different representations for the same mathematical ob-
ject.

As a simple example, since [1] Z,(x2)=(1—4x?)"1/2,
(8) gives

(10)
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complete elliptic integrals.

Because of the equivalence of Z; and P, new represen-
tations for the lattice Green functions are obtained in
terms of the combinatorial quantities S\%’ investigated by
Guttmann and Prellberg in [1]. Thus
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(10) is also trivially satisfied. The application of this pro- ~ g2 (13)
cedure to the known results for Z; and P, produces two n=0me
rather fascinating integrations over the product of two with
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This follows at once from the formulas I3(z) APPENDIX
= 2n/(n1)?185?, Eq. (6a), which gi
2,lz/27/(n1)1S,%, Eq. (6a), which gives Here we include an alternative evaluation of Z,, which
25w (x /2)*" @) [ 2m+1 avoids the Heun function.
Zy1(x?) '20 S S fo 12K (O] (xt)dt For d 4, (6a) gives

(16) Z,(xH)= fo“’zKO(t)Ig(xt)dt . (A1)
and, in terms of Gauss’s function, By using Watson’s series
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For instance, since Z,(x?)=(1—4x2)"'/2, we have w (1) (1)
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to be compared with [1] Z3(x2)=F(%, 514,141, 1;x2). (AS)
Furthermore, the Fuchsian differential equations given Also [4]
for Z,(x) with d =2,3,4,5,6 might be useful for writing
down similar equations for the lattice Green functions in —k —k. — . L
these dimensions. F R
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Again, by applying the identity
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Now, by using standard hypergeometric identities, this can be reexpressed as an Appell hypergeometric function of two
variables [5]:
2

Z,(x)=3 =) [x 21+ VI a2 JF, | —n,—ny1; |12 L4 2
¢ =0 T 1V ii—axe
=F,(1, 51, ;4xX(1—V1—4x2)%,4x2(1+V 1—4x2)?) . (A10)
[
Finally, by writing here a further ,F; transformation
2 (1—k%)=4x*(1—V'1—4x2%)?, —k, 4,45
— (A11) F 1
k2 (1—k2 )=4xX14+V1—4x2)?, 3k kr—k;
—k,—k/2,(1—k)/2,L;
k! 22
SO - =(_1.)_.4 s Lk ik 1 (A14)
ki =118xV1—4x>—1(1—8x)V1—16x2, (A12) 7'k 2 T2

[ [4], p.65, Eq. (2.4.2.3)], which, together with (A6), gives
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and applying Bailey’s theorem, we arrive at Guttmann
and Prellberg’s formula
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The key point of this evaluation is (A6). We mention As an application, consider the fcc lattice Green function
J
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The integration over z gives
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where u =t /(1+1¢). Therefore, we have
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that is, recalling (A5) and (A15),
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where
ki =1+2t(1+0)732=L(1—1)(1—=30)"2(1+1) 7" (A20)

[[2] Eq. (7.3)]. Thus, within the framework of the generalized hypergeometric series, the fcc lattice Green function ap-
pears to be intimately related to Z,.

[1] A. J. Guttmann and T. Prellberg, Phys. Rev. E 47, R2233 [4] L. J. Slater, Generalized Hypergeometric Functions (Cam-
(1993). bridge University Press, Cambridge, 1966), p. 62, Eq.

[2] G. S. Joyce, Philos. Trans. R. Soc. London 273, 583 (1973). (2.4.1.2).

[3] E. T. Whittaker and G. N. Watson, 4 Course in Modern [5] W. N. Bailey, Generalized Hypergeometric Series (Cam-
Analysis, 4th ed. (Cambridge University Press, Cambridge, bridge University Press, Cambridge, 1935), p. 81.

1963), p. 229.



